Introduction to string

 indexing
Tries

A trie (pronounced "try") is a 1rooted tree representing a collection of strings with one node per common prefix

Smallest tree such that:

Each edge is labeled with a character $c \in \Sigma$

A node has at most one outgoing edge labeled c, for $c \in \Sigma$

Each key is "spelled out" along some path starting at the root

Natural way to represent either a set or a map where keys are strings

This structure is also known as a Σ-tree

Tries: example

Represent this map with a trie:

Key	Value
instant	$\mathbf{1}$
internal	$\mathbf{2}$
internet	$\mathbf{3}$

The smallest tree such that:
Each edge is labeled with a character $c \in \Sigma$
A node has at most one outgoing edge labeled c, for $c \in \Sigma$

Each key is "spelled out" along some path starting at the root

Tries

How do we check whether "infer" is in the trie?

Tries

How do we check whether "infer" is in the trie?

Start at root and try to match successive characters of "infer" to edges in trie

Tries

How do we check whether "infer" is in the trie?

Start at root and try to match successive characters of "infer" to edges in trie

Tries

How do we check whether "infer" is in the trie?

Start at root and try to match successive characters of "infer" to edges in trie

Tries

How do we check whether "infer" is in the trie?

Start at root and try to match successive characters of "infer" to edges in trie

Tries

Matching "interesting"

Tries

Matching "interesting"

Tries

Matching "interesting"

Tries

Matching "insta"

Tries

Matching "insta"

Tries

Matching "insta"

Tries

Matching "insta"

Tries

Matching "instant"

Tries: example

Checking for presence of a key P, where $n=|P|$, is $\mathbf{O}(\boldsymbol{n})$ time

If total length of all keys is N, trie has $\mathbf{O}(\mathbf{N})$ nodes

What about $|\Sigma|$?

Depends how we represent outgoing edges. If we don't assume $|\Sigma|$ is a small constant, it shows up in one or both bounds.

Tries

How to represent edges between a node and its children?

Tries

How to represent edges between a node and its children?

Map (from characters to child nodes)

Tries

How to represent edges between a node and its children?

Map (from characters to child nodes)
Idea 1: Hash table

Tries

How to represent edges between a node and its children?

Map (from characters to child nodes)
Idea 1: Hash table
Idea 2: Sorted lists

Tries

How to represent edges between a node and its children?

Map (from characters to child nodes)
Idea 1: Hash table
Idea 2: Sorted lists
Assuming hash table, it's reasonable to say querying with $P,|P|=n$, is $O(n)$ time

Tries: another example

We can index T with a trie. The trie maps
substrings to offsets where they occur

$a c$	4
ag	8
at	14
cc	12
cc	2
ct	6
gt	18
gt	0
ta	10
tt	16

Index

Indexing with suffixes

Some indices (e.g. the inverted index) are based on extracting substrings from T A very different approach is to extract suffixes from T. This will lead us to some interesting and practical index data structures:

© Suffix Trie

Suffix Tree

Suffix Array

FM Index

Suffix trie

Build a trie containing all suffixes of a text T

T: GTtatagctgatcgcgacgtagcga GTTATAGCTGATCGCGGCGTAGCGG TTATAGCTGATCGCGGCGTAGCGG TATAGCTGATCGCGGCGTAGCGG ATAGCTGATCGCGGCGTAGCGG

TAGCTGATCGCGGCGTAGCGG A GCTGATCGCGGCGTAGCGG GCTGATCGCGGCGTAGCGG CTGATCGCGGCGTAGCGG TGATCGCGGCGTAGCGG GATCGCGGCGTAGCGG ATCGCGGCGTAGCGG $m(m+1) / 2$ TCGCGGCGTAGCGG
C GCGGCGTAGCGG
GCGGCGTAGCGG
C G GCGTAGCGG
G GCGTAGCGG GCGTAGCGG C G TA G C G G

G T A G C G G
TAGCGG
A G C G G G C G G

Suffix trie

First add special terminal character $\mathbf{\$}$ to the end of T
$\mathbf{\$}$ is a character that does not appear elsewhere in T, and we define it to be less than other characters (for DNA: $\mathbf{\$}<\mathbf{A}<\mathbf{C}<\mathbf{G}<\mathbf{T}$)
\$ enforces a rule we're all used to using: e.g. "as" comes before "ash" in the dictionary. $\mathbf{\$}$ also guarantees no suffix is a prefix of any other suffix.

T: GTTATAGCTGATCGCGGCGTAGCGG\$ GTTATAGCTGATCGCGGCGTAGCGG\$ TTATAGCTGATCGCGGCGTAGCGG\$ TATAGCTGATCGCGGCGTAGCGG $\$$ ATAGCTGATCGCGGCGTAGCGG\$ TAGCTGATCGCGGCGTAGCGG\$ AGCTGATCGCGGCGTAGCGG\$ GCTGATCGCGGCGTAGCGG $\$$

CTGATCGCGGCGTAGCGG\$
TGATCGCGGCGTAGCGG\$ GATCGCGGCGTAGCGG\$ ATCGCGGCGTAGCGG\$
TCGCGGCGTAGCGG\$
CGCGGCGTAGCGG\$
GCGGCGTAGCGG\$
CGGCGTAGCGG\$
G GCGTAGCGG\$
GCGTAGCGG\$

Suffix trie

T: aba
What's the suffix trie?

Suffix trie

T: aba\$
What's the suffix trie?

Suffix trie

T: aba\$

What's the suffix trie?

Suffix trie

T: aba\$

What's the suffix trie?

Suffix trie

T: aba\$

What's the suffix trie?

Suffix trie

T: aba\$
What's the suffix trie?

Suffix trie

T: aba\$

What's the suffix trie?

Suffix trie

T: abaaba

Suffix trie

T: abaaba\$

Suffix trie

T: abaaba \$

Suffix trie

T: abaaba \$

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Suffix trie

T: abaaba\$

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Suffix trie

T: abaaba\$

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Suffix trie

T: abaaba\$

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Would this still be the case if we hadn't added \$?

Suffix trie

T: abaaba
T\$: abaaba\$

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Would this still be the case if we hadn't added \$?

Without \$, no way to

Suffix trie

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Would this still be the case if we hadn't added \$? No

Without the \$, we have problems; e.g. here "ba" is a prefix of "baaba" spell out this suffix \& end at a leaf in the trie.

T: abaaba

Suffix trie

Think of each node as having a label, spelling out characters on path from root to node

Suffix trie

Think of each node as having a label, spelling out characters on path from root to node

Suffix trie

How do we check whether a string S is a substring of T?

Suffix trie

How do we check whether a string S is a substring of T?

Note: Each of T's substrings is spelled out along a path from the root.

Suffix trie

How do we check whether a string S is a substring of T ?

Note: Each of T's substrings is spelled out along a path from the root.

Every substring is a prefix of some suffix of T.

Suffix trie

How do we check whether a string S is a substring of T ?

Note: Each of T's substrings is spelled out along a path from the root.

Every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of S

Suffix trie

How do we check whether a string S is a substring of T ?

Note: Each of T's substrings is spelled out along a path from the root.

Every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of S

If we "fall off" the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T

Suffix trie

How do we check whether a string S is a substring of T ?

Note: Each of T's substrings is spelled out along a path from the root.

Every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of S

If we "fall off" the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T

If we exhaust S without falling off, S is a substring of T

Suffix trie

How do we check whether a string S is a substring of T ?

Note: Each of T's substrings is spelled out along a path from the root.

Every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of S

If we "fall off" the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T

If we exhaust S without falling off, S is a substring of T

Suffix trie

How do we check whether a string S is a substring of T ?

Note: Each of T's substrings is spelled out along a path from the root.

Every substring is a prefix of some suffix of T.
Start at the root and follow the edges labeled with the characters of S

If we "fall off" the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T

If we exhaust S without falling off, S is a substring of T

Suffix trie

How do we check whether a string S is a substring of T ?

Note: Each of T's substrings is spelled out along a path from the root.

Every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of S

If we "fall off" the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T

If we exhaust S without falling off, S is a substring of T

Suffix trie

How do we check whether a string S is a suffix of T?

Same procedure as for substring, but additionally check terminal node for $\$$ child

Suffix trie

How do we check whether a string S is a suffix of T?

Same procedure as for substring, but additionally check terminal node for $\$$ child

Suffix trie

How do we check whether a string S is a suffix of T?

Same procedure as for substring, but additionally check terminal node for \$ child

Suffix trie

How do we count the number of times a string S occurs as a substring of T?

Suffix trie

How do we count the number of times a string S occurs as a substring of T?

Suffix trie

How do we count the number of times a string S occurs as a substring of T?

Follow path labeled with S . If we fall off, answer is 0 . If we end up at node n, answer equals \# of leaves in subtree rooted at n .

Suffix trie

How do we count the number of times a string S occurs as a substring of T?

Follow path labeled with S . If we fall off, answer is 0 . If we end up at node n, answer equals \# of leaves in subtree rooted at n .

Suffix trie

How do we count the number of times a string S occurs as a substring of T?

Follow path labeled with S . If we fall off, answer is 0 . If we end up at node n, answer equals \# of leaves in subtree rooted at n .

Leaves can be counted with depth-first traversal.

Suffix trie

How do we find the longest repeated substring of T ?

Suffix trie

How do we find the longest repeated substring of T ?

Find the deepest node with more than one child

Suffix trie

How do we find the longest repeated substring of T?

Find the deepest node with more than one child

Suffix trie

How many nodes does the suffix trie have?

Is there a class of string where the number of suffix trie nodes grows linearly with m ?

Suffix trie

How many nodes does the suffix trie have?

Is there a class of string where the number of suffix trie nodes grows linearly with m ?

Yes: e.g. a string of m a's in a row (a^{m})

Suffix trie

Is there a class of string where the number
of suffix trie nodes grows with m^{2} ?

Suffix trie

Is there a class of string where the number of suffix trie nodes grows with m^{2} ?

Yes: $a^{n} b^{n}$

- 1 root
- n nodes along "b chain," right
- n nodes along "a chain," middle
- n chains of n " b " nodes hanging off each"a chain" node
- $2 n+1$ \$ leaves (not shown)

$$
n^{2}+4 n+2 \text { nodes, where } m=2 n
$$

Suffix trie: upper bound on size

Could worst-case \# nodes be worse than $\mathrm{O}\left(m^{2}\right)$?

Max \# nodes from top to bottom
$=$ length of longest suffix +1
$=m+1$

Max \# nodes from left to right
= max \# distinct substrings of any length
$O\left(m^{2}\right)$ is worst case
$\leq m$

Suffix trie: actual growth

Built suffix tries for the first 500 prefixes of the lambda phage virus genome

Black curve shows how \# nodes increases with prefix length

Suffix trie: actual growth

Built suffix tries for the first 500 prefixes of the lambda phage virus genome

Black curve shows how \# nodes increases with prefix length

Suffix trie: actual growth

Built suffix tries for the first 500 prefixes of the lambda phage virus genome

Black curve shows how \# nodes increases with prefix length

Actual growth much closer to worst case than to best!

Suffix trie: actual growth

Built suffix tries for the first 500 prefixes of the lambda phage virus genome

Black curve shows how \# nodes increases with prefix length

Suffix tries \Rightarrow Suffix trees

Suffix Tree Definitions

A $\boldsymbol{\Sigma}+$-tree is a rooted tree, T , where each edge is labeled with non-empty strings, where no node has two outgoing edges labeled with strings having the same first character. T is compact if all internal nodes have ≥ 2 children.

- for a node v in $T, \boldsymbol{d e p t h}(v)$ or node-depth (v) is the distance from v to the root.
- node-depth(r) $=0$
- $\boldsymbol{s t r i n g}(\mathrm{v})=$ concatenation of all characters on the path $r \leadsto v$
- $\boldsymbol{s t r i n g}-\operatorname{depth}(\mathrm{v})=|\boldsymbol{s t r i n g}(\mathrm{v})|($ note: $\boldsymbol{\operatorname { s t r i n g }}$-depth$(\mathrm{v}) \geq$ node-depth $(\mathrm{v}))$
- for a string x, if \exists node v with $\boldsymbol{s t r i n g}(v)=x$, we say $\operatorname{node}(x)=v$
- T displays string x if \exists node v and string y such that $x y=\boldsymbol{s t r i n g}(\mathrm{v})$
- $\boldsymbol{\operatorname { w o r d s }}(\mathrm{T})=\{\mathrm{x} \mid \mathrm{T}$ displays x$\}$
- A suffix tree of string s is a compact $\Sigma^{+}-$tree such that words (T) $=\left\{s^{\prime} \mid s^{\prime}\right.$ is a substring of $\left.s\right\}$

Defs. from: http://profs.sci.univr.it/~liptak/ALBioinfo/files/sequence_analysis.pdf

Suffix trie: making it smaller

Suffix tree

L leaves, I internal nodes, E edges

$$
\mathrm{E}=\mathrm{L}+\mathrm{I}-1
$$

$T=$ abaaba\$

$\mathrm{E} \geq 2 \mathrm{I}$ (each internal node branches)
$\mathrm{L}+\mathrm{I}-1 \geq 2 \mathrm{I} \Rightarrow \mathrm{I} \leq \mathrm{L}-1$
but
$\mathrm{L} \leq \mathrm{m}$ (at most m suffixes)
I $\leq m-1$
$\mathrm{E}=\mathrm{L}+\mathrm{I}-1 \leq 2 \mathrm{~m}-2$

$$
\mathrm{E}+\mathrm{L}+\mathrm{I} \leq 4 \mathrm{~m}-3 \in \mathrm{O}(\mathrm{~m})
$$

Is the total size $O(m)$ now?

Suffix tree

L leaves, I internal nodes, E edges

$$
\mathrm{E}=\mathrm{L}+\mathrm{I}-1
$$

$\mathrm{E} \geq 2 \mathrm{I}$ (each internal node branches)
$\mathrm{L}+\mathrm{I}-1 \geq 2 \mathrm{I} \Rightarrow \mathrm{I} \leq \mathrm{L}-1$
but
$\mathrm{L} \leq \mathrm{m}$ (at most m suffixes)
$\mathrm{I} \leq \mathrm{m}-1$
$\mathrm{E}=\mathrm{L}+\mathrm{I}-1 \leq 2 \mathrm{~m}-2$

$$
\mathrm{E}+\mathrm{L}+\mathrm{I} \leq 4 \mathrm{~m}-3 \in \mathrm{O}(\mathrm{~m})
$$

Is the total size $O(m)$ now?
NO: The total length of edge labels is quadratic in m .

Suffix tree

$$
\begin{array}{ll}
T=\text { abaaba\$ } \quad \begin{array}{l}
\text { Idea 2: Store } T \text { itself in addition to the tree. Convert tree's } \\
\text { edge labels to (offset, length) pairs with respect to } T .
\end{array}
\end{array}
$$

Space required for suffix tree is now $O(m)$

Suffix tree: leaves hold offsets where suffixes begin

Suffix tree: labels

Again, each node's label equals the concatenated edge labels from the root to the node. These aren't stored explicitly.

Suffix tree: labels

Because edges can have string labels, we must distinguish two notions of "depth"

- Node depth: how many edges we must follow from the root to reach the node
- Label depth: total length of edge labels for edges on path from root to node

Suffix tree: space caveat

Minor point:
We say the space taken by the edge labels is $\mathrm{O}(m)$, because we keep 2 integers per edge and there are $\mathrm{O}(m)$ edges

To store one such integer, we need enough bits to distinguish m positions in T, i.e. ceil $\left(\log _{2} m\right)$ bits. We usually ignore this factor, since 64 bits is plenty for all practical purposes.

Similar argument for the pointers / references used to distinguish tree nodes.

Suffix tree: building

Naive method 1: build a suffix trie, then coalesce non-branching paths and relabel edges

Naive method 2: build a single-edge tree representing only the longest suffix, then augment to include the 2nd-longest, then augment to include 3 rd-longest, etc

Both are $O\left(m^{2}\right)$ time, but first uses $O\left(m^{2}\right)$ space while second uses $O(m)$

Naive method 2 is described in Gusfield 5.4

Suffix tree: building

Other methods for construction:
Ukkonen, Esko. "On-line construction of suffix trees."
Algorithmica 14.3 (1995): 249-260.
$O(m)$ time and space
Has online property: if T arrives one character at a time, algorithm efficiently updates suffix tree upon each arrival

We won't cover it here; see Gusfield Ch. 6 for details
Or just Google "Ukkonen's algorithm"

Suffix tree: actual growth

Built suffix trees for the first 500 prefixes of the lambda phage virus genome

Black curve shows \# nodes increasing with prefix length

Remember suffix trie plot:

Suffix tree: actual growth

Built suffix trees for the first 500 prefixes of the lambda phage virus genome

Black curve shows \# nodes increasing with prefix length

Remember suffix trie plot:

Suffix tree

How do we check whether a string S is a substring of T ?

Suffix tree

How do we check whether a string S is a substring of T ?

Essentially same procedure as for suffix trie, except we have to deal with coalesced edges

Suffix tree

How do we check whether a string S is a suffix of T ?

Essentially same procedure as for suffix trie, except we have to deal with coalesced edges

Suffix tree

How do we count the number of times a string S occurs as a substring of T ?

Same procedure as for suffix trie

Suffix tree: applications

With suffix tree of T, we can find all matches of P to T. Let $k=\#$ matches.
E.g., $P=\mathrm{ab}, T=\mathrm{abaaba} \$$

Step 1: walk down ab path
If we "fall off" there are no matches

With proper tree modifications to access leaves of a node in $O(1)$ each

Step 2: visit all leaf nodes below
Report each leaf offset as match offset
$O(n+k)$ time

Suffix tree application: find long common substrings

Dots are maximal unique matches (MUMs), a kind of long substring shared by two sequences

Red = match was between like strands, green $=$ different strands

Axes show different strains of Helicobacter pylori, a bacterium found in the stomach and associated with gastric ulcers

Suffix tree application: find longest common substring

To find the longest common substring (LCS) of X and Y, make a new string $X \# Y \$$ where $\#$ and $\$$ are both terminal symbols. Build a suffix tree for $X \# Y \$$.
$X=x a b x a$
$Y=b a b x b a$
X\#Y\$ = xabxa\#babxba\$

Consider leaves: offsets in [0, 4] are suffixes of X, offsets in $[6,11]$ are suffixes of Y

Traverse the tree and annotate each node according to whether leaves below it include suffixes of X, Y or both

The deepest node annotated with both X and Y has LCS as its label. $O(|X|+|Y|)$ time and space.

Suffix tree application: generalized suffix trees

This is one example of many applications where it is useful to build a suffix tree over many strings at once

Such a tree is called a generalized suffix tree.

Longest Common Extension

Longest common extension:We are given strings S and T. In the future, many pairs (i, j) will be provided as queries, and we want to quickly find:
the longest substring of S starting at i that matches a substring of T starting at j .

Build generalized suffix tree for S and T.
Preprocess tree so that lowest common ancestors
(LCA) can be found in constant time. This can be
LCA in
O(1) time
done using range-minimum queries (RMQ)
https://www.ics.uci.edu/~eppstein/261/BenFar-LCA-00.pdf

Create an array mapping suffix numbers to leaf nodes.

Given query (i, j):
Find the leaf nodes for i and j
Return string of LCA for i and j

Longest Common Extension

Longest common extension:We are given strings S and T. In the future, many pairs (i, j) will be provided as queries, and we want to quickly find:
the longest substring of S starting at i that matches a substring of T starting at j .

Build generalized suffix tree for S and T.
Preprocess tree so that lowest common ancestors
(LCA) can be found in constant time. This can be
done using range-minimum queries (RMQ)
$\rightarrow h t t p s: / / w w w . i c s . u c i . e d u / \sim e p p s t e i n / 261 / B e n F a r-L C A-00 . p d f$

Create an array mapping suffix numbers to leaf nodes.

Given query (i, j):
Find the leaf nodes for i and j
Return string of LCA for i and j

$$
\mathrm{O}(|\mathrm{~S}|+|\mathrm{T}|)
$$

$$
\mathrm{O}(|\mathrm{~S}|+|\mathrm{T}|)
$$

$O(|S|+|T|)$

O(I)
O(LCA(i,j))

Indexed search in practice : MUMMER

(lase			
(ex			
(ixise			
	${ }_{6}^{629}$	${ }^{37} 3$	
	${ }_{6}^{627}$	${ }_{40}^{34}$	

MUMMER first builds an index on T (this takes about a minute for chr1 on my machine)

Then is searches for maximal matches shared between T and P - these are output very fast (a second or so; and there are many).

Suffix trees in the real world: MUMmer

MUMmer v3.32 time and memory scaling when indexing increasingly larger fractions of human chromosome 1

For whole chromosome 1, took 2m:14s and used 3.94 GB memory

Suffix trees in the real world: MUMmer

Attempt to build index for whole human genome reference:

```
mummer: suffix tree construction failed: textlen=3101804822
```

larger than maximal textlen=536870908

We can predict it would have taken about 47 GB of memory

Suffix trees in the real world: the constant factor

While $O(m)$ is desirable, the constant in front of the m limits wider use of suffix trees in practice

Constant factor varies depending on implementation:
Estimate of MUMmer's constant factor $=3.94 \mathrm{~GB} / 250$ million nt ≈ 15.75 bytes per node

Literature reports implementations achieving as little as 8.5 bytes per node, but no implementation used in practice that I know of is better than $\approx \mathbf{1 2 . 5}$ bytes per node

Kurtz, Stefan. "Reducing the space requirement of suffix trees." Software Practice and Experience 29.13 (1999): 1149-1171.

Suffix tree: summary

Organizes all suffixes into an incredibly useful, flexible data structure, in $O(m)$ time and space

A naive method (e.g. suffix trie) could easily be quadratic or worse Used in practice for whole genome alignment, repeat identification, etc

Actual memory footprint (bytes per node) is quite high, limiting usefulness

GTTATAGCTGATCGCGGCGTAGCGG\$ m chars
GTTATAGCTGATCGCGGCGTAGCGG\$
TTATAGCTGATCGCGGCGTAGCGG\$ TATAGCTGATCGCGGCGTAGCGG\$ ATAGCTGATCGCGGCGTAGCGG\$ TAGCTGATCGCGGCGTAGCGG\$ AGCTGATCGCGGCGTAGCGG $\$$ GCTGATCGCGGCGTAGCGG\$ CTGATCGCGGCGTAGCGG\$ TGATCGCGGCGTAGCGG\$ GATCGCGGCGTAGCGG $\$ m(m+1) / 2$
ATCGCGGCGTAGCGG \$ TCGCGGCGTAGCGG \$ CGCGGCGTAGCGG\$ GCGGCGTAGCGG\$ CGGCGTAGCGG\$ GGCGTAGCGG\$ GCGTAGCGG\$ C GTAGCGG\$ GTAGCGG\$ TAGCGG\$ AGCGG\$ GCGG\$ C G G \$ G G \$

Bonus Content (not required) : Suffix tree construction

WOTD (Write-Only Top-Down) Construction

Giegerich, Robert, and Stefan Kurtz. "A comparison of imperative and purely functional suffix tree constructions." Science of Computer Programming 25.2 (1995): 187-218.

Build a suffix tree for string s\$
Recursive construction:
For every branching node node(u), subtree of node(u) is determined by all suffixes of $s \$$ where u is a prefix.

Recursively construct subtree for all suffixes where u is a prefix.

Definition: remaining suffixes of u

$$
R(\text { node }(u))=\{v \mid u v \text { is a suffix of } s \$\}
$$

WOTD (Write-Only Top-Down) Construction

Build a suffix tree for string s\$
Recursive construction:

For every branching node node(u), subtree of node(u) is determined by all suffixes of $s \$$ where u is a prefix.

Recursively construct subtree for all suffixes where u is a prefix.

Definition: remaining suffixes of u

$$
R(\text { node }(u))=\{v \mid u v \text { is a suffix of } s \$\}
$$

Definition: c-group of node(u)

$$
\text { group(node(u), c) }=\left\{w \in \Sigma^{*} \mid c w \in R(\operatorname{node}(u))\right\}
$$

WOTD (Write-Only Top-Down) Construction

```
    def WOTD(T : tree, node(u): node):
    for each c \in \Sigma U {$}:
        G = group(node(u), c) non-branching suffix
        ucv = lcp(G)
        if |G| == 1:
                add leaf node(ucv) as a child of node(u)
            else:
                add inner node(ucv) as a child of node(u)
                WOTD(T, node(ucv))
branching suffix
```

Start the algorithm by calling WOTD(T, node((ϵ))

WOTD Example

$$
s=\text { ttatctctta\$ }
$$

WOTD Example

$s=$ ttatctctta

WOTD Example

$$
s=\text { ttatctctta }
$$

WOTD Example

$$
s=\text { ttatctctta }
$$

WOTD Example

$$
s=\text { ttatctctta }
$$

WOTD Properties

- Worst case time still $\in \mathrm{O}\left(|\mathrm{T}|^{2}\right)$
- Expected case time $\in O(|T| \log |T|)$
- Write-only property \& recursive construction lends itself well to parallelism
- Good caching properties (locality of reference for substrings belonging to a subtree)
- Top-down construction order allows lazy construction as discussed in:

